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Abwaa

Laser communication and optical remote sensing systems often require a highly sensitive
detection scheme to measure extremely weak optical signals. This is particularly true for
a receiver designed for a deep space optical communication link. The conventional direct
detection scheme is sensitive to receiver noise and detector quantum efficiency while
heterodyne detection requires complex wave front matching and a highly stable local
oscillator. This paper considers a direct detection scheme where the optical signal is
amplified by an optical parametric amplifier prior to photo detection. It is shown through
analysis and simulation that such a scheme can outperform the direct detection receiver
when the gain of the amplifier is large and the detector quantum efficiency falls below a
certain value. A method to calculate the value of quantum efficiency below which the
preamplifier is useful is presented, Performance comparisons are carried out between
direct detection schemes with and without the preamplifier. Conditions under which the
optical parametric amplifier results in an improvement of the performance of the receiver
are pointed out,

1. lntroduct ion

This research was motivated by the need to increase the sensitivity of optical receivers so
that they can be operated in the photon starved regime. Such regimes are likely to occur
in deep space optical communication with a ground or space based receiver, for example,
an optical link from Pluto to Earth. Furthermore, weak signal detection problems can also
be found in laser remote sensing as well as medical imaging. Although heterodyne
reception can lead to increased sensitivity compared to direct detection, it is much harder
to accomplish, requiring a very stable local oscillator and complex mode matching of the
local oscillator and the received signal. Also, the incoming signal may lose a lot of its
coherence due to the atmosphere and may require adaptive optics for correction. Thus,
heterodyne systems outperform the direct detection systems, but with a much larger
complexity of receiver hardware and cost. This investigation was carried out to determine
if optical receiver sensitivities better than the conventional direct detection systems could
be obtained without all the complexity associated with heterodyne detection.

The performance of conventional direct detection systems is limited by detector noise
and quantum efficiency especially for high data rate systems. While almost noise free
detectors do exist, they have a very low intrinsic gain or bandwidth. If the detector is to
have a high internal gain, then it results in detector noise, for example, the dark currents
and the multiplication noise in an APD. If, on the other hand, we use an ideal high gain
amplifier prior to photo detection, then the performance of the receiver is essentially
quantum limited in the absence of a strong background noise. An ideal high gain
amplifier is defined as one that does not seriously degrade the signal-to-noise ratio from



the input to the output. The use of a such an amplifier will then permit detection of
signals without the addition of significant noise. It is of interest to note here that even
though an ideal amplifier does not degrade the signal-to-noise ratio, it will add noise to
the incoming signal to satisfy the requirement that the total noise after amplification is
greater than or equal to the minimum permitted by quantum mechanics.

The use of an optical amplifier in a laser communication system has been reported in the
literature. The enhancement of optical receiver sensitivities by amplification of the carrier
prior to detection of an optical modulated signal has been discussed by Arnaud [1]. He
concludes that pre amplification is particularly useful when the input signal has a
distorted wavefront and is suitable for communication in clear or possibly turbulent
atmosphere, Steinberg [2], considers the use of a laser amplifier in a laser communication
system and derives some general results under which it can be used, without doing a
numerical performance comparison. Arams and Wang [3] experimentally verified
Steinberg’s theoretical treatment and reported a 32 dB gain in the minimum detectable
signal,

In Section 2 the conditions under which an amplifier-detector configuration will
outperform the detector alone configuration are theoretically derived, Section 3 is a brief
discussion of the nonlinear mechanism that gives rise to optical parametric amplification.
Optical parametric amplifiers have recently become feasible due to the availability of
high damage threshold nonlinear crystals as well as good quality pump lasers with high
peak powers. The performance simulation of the two receiver configurations are
discussed in Sections 4 and 5. Conclusions are presented in Section 6.

2. Theoretical Analvsjs

An analytical comparison of the optical receiver performance with and without the
Optical Parametric Amplifier (OPA) is now derived, The block diagram of the receiver
configuration with the amplifier is shown in Fig, 1.
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Figure 1. Block diagram of a direct detection receiver preceded by a parametric

amplifier.

Let N$ and Nb denote the mean signal and background counts at the input to the
parametric amplifier per decision interval. The number of photons that arrive is modeled
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as a Poisson process at the OPA input, The OPA is assumed linear in the signal
bandwidth of interest. Upon amplification the statistics of the number of photons at the
OPA output ceases to be Poisson, In particular, if the linear amplifier has a gain G, the
mean and variance of the signal count at the output of the OPA is given by

E(Ns) = GNs , Var(NJ = G2N~ (1)

A similar relationship is true for the background count as well. The OPA output consists of
three terms that result from the amplified signal, amplified background noise and the noise
added by the linear amplifier. If the amplifier has a noise figure equal to unity then the
amplifier adds the minimum noise so that the output signal-to-noise ratio is equal to the
input signal-to-noise ratio. The amplifier added noise is given by

Added noise of amplifier= (GF-l)Na (2)

where Na can be regarded as the input zero point fluctuations and F, is the amplifier noise
figure. In this analysis, we assume F= 1. The detailed statistics of fluctuations in the
amplification of quanta for various scenarios are presented in reference [4]. Suffice it to say
here that, because the input process at the detector is not Poisson, there will be a noise term
in addition to the shot noise process, This additional noise term at the receiver is directly
due to the amplification process and will not be present if the input laser signal is directly
coupled to the detector, The signal-to-noise ratio (SNR) at the output of the detector can be
written as

SNR =
rj2G2N:

qG(N~ + Nb) + q(G - l)N= -t- q2G(G - 1)(N, + N~) -t- q2(G - 1)(G - 2)N@ + cr~2 + cr~2

(3)
where q is the detector quantum efficiency, cr~’, cr~2 are the noise terms due to the
detector and thermal noise respectively. Note that the DC noise power is not included in the
denominator of Eqn, (3). This is due to the fact that if the noise has a non zero mean it can
be canceled without any loss of generality and will not affect the analysis of performance,
If the amplifier’s gain is very large i.e. G> >1, the signal-to-noise ratio is very closely
approximated as

SNR1 =
q2G2N82

(4)
?/G(N, +Nb +Nd)+  T/2 G(G-l)(N$ +Nb +ZV~)+  crD2 +crT2 “

If the amplifier is not used in the schematic of Fig, 1., the resulting signal-to-noise ratio can
be obtained from Eqn. 4. by substituting G=l, The SNR without the OPA is given by

SNR2 =
rj2N$2

MN. + Nt,) + CTD2 + crT2 “
(5)

Some detectors will introduce an excess noise factor~ into the noise terms in the
denominator of Eqns. (4-5). Further, let a~’ + cr7

2 = 02. Then the two SNR expressions
with the amplifier (SNR1) and without the amplifier (SNRI) are given by the expressions



and

SNR1 =
q12G2N82

~IGfI(N, + Nb + Na) + q12G2f1(N,  + Nb + No) -t- q2
(6)

SNR2 =
r/22N82

~2f2(N.  + Nt) + ~22

(7)

respectively, where f’l and f2 are the excess noise factor terms. It is also assumed that
these factors are incorporated into the gain dependent dark current component of 02. As
before, in obtaining SNRI,, it is assumed that G-I=G. It is clear that if the amplifier is to be
of any use SNRI >SNR2.

Next, the general conditions under which the amplifier based system is useful ate derived.
The two questions that arise are, 1) what are the limits on the value of the detector
quantum efficiency, q2, for which the amplifier will help? In other words how small does
~2 have to be for the amPlifier tO be beneficial and 2) how large mUSt the amplifier gain> G>
be? We will see later that the performance of the amplifier based system becomes
independent of ql and thus, it does not affect the performance comparison. From Eqns. (6)
‘and (7), the condition SNRJ >SNR2 is satisfied when

~[tW’fJl + T?, G)(N$ + N, + N=) + q’]
Gz > % (8)

n2f2(N,  + Nb) + ~22 “

The answer to the first question on the limits of q2 is obtained by letting G+ 00, in Eqn.
(8). The maximum value for q2= qO is such that

~ < f2(N. +N,)+/f22(N. +N~)2+4~:fl(N.  +Nb+Na) = ~.
2fl(N. + Nb + N.)

(9)

Thus, we see that the signal-to-noise ratio of a direct detection system is improved by the
addition of an optical preamplifier if the quantum efficiency of the detector is in the range
OS q S qO. The second question on how large must G be is obtained by solving for G in
Eqn, (8), The value of G is then given by the minimum value that staisfies the inequality

G2{q12q2f2(N~  + Nb) – q12q22f1(N$  +- N/j + N.) + q12CJ22) – G(7h7122f1(N + ‘b + N.))

–-q’%f >0 (lo)

Equation (9) and the quadratic inequality in (1 O) together establish the general conditions
under which the amplifier may be used in a direct detection system to obtain improved
signal-to-noise ratio.

3, optical Parametric Amtiifier



Laser amplifiers have been used in the past for amplification of weak signals. To achieve
any appreciable gain from a laser amplifier, the input signal power has to be above a ceratin
threshold value. As a result, a laser amplifier is not suited to photon starved regimes.
Moreover, laser amplifiers opearte on the basis of transition between energy levels of
atomic ions and consequently, the spectral bandwidth is very narrow. OPAS opearte on a
much broader bandwidth and are continouosly tunable over a wide wavelength range.
These properties make an OPA superior to laser amplifiers for communication application.

When an electromagnetic (EM) field propagates through a linear medium, its propagation
characteristics are not influenced by its own intensity or by the presence of other
electromagnetic fields. However, when the EM field propagates through a nonlinear
medium, different electromagnetic fields can interact with the result that their propagation
constants become intensity dependent. In particular, the propagation constants of one
field are influenced by the presence of the other fields. In the parametric process
discussed here, a strong high frequency EM wave called the pump, having a frequency
COP, interacts via the nonlinear response of the medium with two lower f~uency  EM
waves, called the signal having a frequency O, and the idler having a frequency ~i. The
interaction produces amplification at the frequencies ~, and @i. The optical parametric
process is a nonlinear mixing process, Both parametric oscillation and amplification are
possible. The parametric process involves breakdown of a pump photon propagating in a
nonlinear optical crystal into two photons of frequencies ~~ and @i. The breakdown may
occur due to spontaneous or stimulated emission. The total photon energy is conserved so
that

(oP = ~$ +@i O (11)

For a given OP, there is no unique pair of oJ~ and
pairs is possible. The phase matching condition

kp=ks+ki

~i. In fact, an infinite number of such

(12)

where k is the wave vector for radiation in the nonlinear medium, determines which pair
of co. and mi frequencies are generated. The ability to vary the phase matching condition
affords continuous wavelength tunability in optical parametric oscillators (OPO) or
amplifiers, Parametric oscillators are similar to lasers because the output is coherent and
is emitted from a resonant optical cavity.

Recent improvements in nonlinear crystals, specifically LN (LiNb03), KTP (KTiP04),
BBO (BaB204),  LBO (LiB305) and KN (KNb03) have made very efficient OPA
devices possible. For the amplification process to be efficient the following conditions for
the pump beam in relation to the received signal beam will have to be satisfied. a, Spatial
overlap, b. Temporal overlap and c. Phase matching. Under these conditions the Intensity
gain of the signal due to the amplifier, G, is given by [5] as

~2

G = 1-I- -& Sinh2(12) (14)

where rO is the gain constant depending upon the nonlinear medium as well as the

operating wavelengths, r2 = r02 - (2)2, Ak is the amount of phase mismatch and z is

the length over which the waves interact. The amplifier gain as can be seen from Eqn.
(14) is a function of the interaction length in the crystal. Gains of the order of 30 dB or
more has been reported [6]. The value of gain chosen for this analysis was 35 dB.



4. Jlirect Detection with Parametric Amdificatioq

Theperformance of theoptical receiver shown in Fig l.isevaluated  through computer
analysis. The signal is considered to be M-ary Pulse Position Modulated (PPM). The
signal-to-noise ratio in a parametric amplifier based receiver is given in Eqn. (6). Because
the parametric amplifier affords a very large gain, a low noise, low gain detector is used,
In particular, a Si-PIN photo diode is used that has an excess noise factor equal to unity
and a detector gain equal to unity. The signal slot which contains one word of
information bits is also the decision interval and is Ins wide. For background noise

0 .6W
calculations a worst case sky irradiance of ~ was taken, The receiving area is

taken from the 10m deep space optical rece~vi;gn~nt;;na (DSORA) being considered at
JPL [7]. The bandwidth of the OPA is of the order of 100 Ghz, The half angle field-of-
view due to the DSORA system is calculated to be about 50 p radians. The amplifier
added noise in photon counts, which can also be thought of as the amplified input zero
point fluctuations, is given by

Amplifier noise = G n$ AvAfMA (15)
c

where G is given in Eqn. (14), v is the carrier frequency of the signal, c is the velocity of
light , n is the refractive index of the material, Av is the smaller of the pump or the gain
(OPA) bandwidth, AQis the solid angle input as seen by the amplifier and dA is the
cross sectional area of the pump at the front face of the OPA. The thermal noise count
was considered to be negligible in view of the large amplifier added noise as well as the
amplified background radiation. For the chosen value of the amplifier gain, the detector
noise and the therm al noise are also negligible in comparison to the noise entering the
detector.

In the limit of large gain the signal-to-noise ratio that results from amplifier based direct
detection scheme can be obtained from Eqn, (4), by letting the gain G be very large. The
SNR is given by,

SNR1 =
N~2

N~+Nb+No”
(16)

Thus, in the limit of a very high gain, the performance of the optical receiver is not
limited by the detector quantum efficiency of the detector and is only a function of the
background noise and amplifier noise added noise. Fig. 2 shows the probability of bit
error versus the required photons/bit for a PPM signal modulation with M=8. The
background photon count from a worst case value of N~=100 over the decision interval to
a best case value of N~=O are considered. The statistics of the noise process has been
assumed to be Gaussian. The signal and noise count that result from the amplification are
very large and this assumption is easily justified.

5. ~irect Detect ion without Amtiificat ion

The direct detection system with no amplification is analyzed with the same values for
signal and the various noise terms. The signal-to-noise ratio xvsulting in a direct detection
system is given in Eqn. (7). Various choices exist for the detectors in this scenario,



depending on the application, Three of the choices are a Si-APD, Si-PIN and a PMT .
PMTs have a very large gain and a~ almost noise free but they are limited by a very low
quantum efficiency and reliability. PIN diodes also have excess noise factors close to
unity. But since they don’t have an intrinsic gain, detection of very low level photons may
not be possible because of their inability to raise the signal above the noise floor of the
post detection circuit, APDs achieve an internal gain not as large as the PMT but enough
to raise the signal above the thermal noise as well as the dark currents. They can also
operate at high data rates. The main limit associated with the APD is the excess noise
factor, From the above reasoning, an APD seems to be the best candidate for an optical
deep space receiver and was chosen for this evaluation,

The performance was obtained by assuming Gaussian statistics for the noise once again.
The gain of the APD is assumed large enough to justify Gaussian statistics. A discussion
of the results shown in Figs. 2-4 is presented in the next section. In this section we will
revisit a theoretical comparison of performance between the direct detection systems with
and without the amplifier. The question is posed as follows, How much smaller can the
signal count of an amplifier based system be to obtain the same signal-to-noise ratio as a
direct detection system with no amplifier? Although in a communication receiver system
the ultimate value of interest is the bit error rate we will make an assumption that a
signal-to-noise ratio comparison is equivalent to a comparison of the resulting bit error
rates. This assumption is justified based on our earlier assumption of Gaussian statistics
for the signal and noise counts, The value for the gain dependent and independent dark
currents for the APD are taken as 5,2 pA and 15 nA, respectively [8].

Let the signal and noise count of the amplifier based detection scheme be reduced by a
factor r, This may be due to the fact that the photon collecting area of the receiver is
reduced by the same factor. Then, if the gain G, is large we have the following equation,

N=

2 q22N=2

r(N~ + N~ + rNa) = q2~2(N, + N~) + 022 “

Solving for the value of r in the above equation we get

(17)

(18)

The equation for r looks rather complicated and it is not readily apparent as to what
typical values of r are? However, making some simplifying assumptions a reasonable
estimate for r can be obtained. Assuming that cr2 and N. are much smaller than N.+ N~,
the solution for r is obtained as

#_

%
(19)

which, in fact, is the approximate gain in the signal-to-noise ratio of an amplifier based
system over that of a direct detection system. In deriving Eqn, (19), two assumptions
were made as mentioned above. But neither of these are stringent assumptions or
restrictive. For the detection scheme to perform well with the amplifier we would require
that N. be much smaller than N,+ N~ and for the detection scheme without the amplifier
that CJ2 be much smaller than N$ + N~. In practice, these conditions will be usually met
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to obtain the desired performance. What this says is that for the APD, the multiplication
noise is much larger than the noise contribution due to the gain independent and gain
dependent dark currents. Under these conditions, we notice that the factor r which is a

‘2 Thismeasure of the area of the photon collecting dish can reduce by a factor of —.
f,

implies that for a circular collecting area the diameter can be reduced by a factor
J
%.A
f,

plot of the reduction in diameter of the collecting area versus the quantum efficiency of
the detector is shown in Fig. 4.

6, Discussion and Cocclusions

The primary motivation for this research was to investigate the possibility of improving
the performance of a direct detection system for deep space communication applications.
A comparison Figs. 2 and 3 reveals that the performance of a direct detection system
preceded by a parametric amplifier is better than that of the direct detection receiver
alone. Since the region of interest is the photon starved regime only signal count/bit up to
40 are shown in the figures. With an amplifier based system, sensitivity as low as 13
photons/bit is obtained at bit error rate (BER) of 10-6, for a background count of 10.
Even for the worst case background considered, the sensitivity for a BER of 10-6 is onlY
28 photons/bit. Roughly, the gain obtained using a parametric amplifier is about 4.5 dB
over the various background levels considered. However, as we have seen from the
theoretical analysis of performance in Section 5, the performance improvement is
inversely proportional to the quantum efficiency of the direct detction detctor. In this
analysis a value for the quantum efficiency equal to 0.75, which satisfies Eqn. (9) was
chosen. If qz is smaller, a higher performance gain will be obtained. In this context, it
may be useful to discuss the wavelengths of operation of the deep space communication
link. The parametric amplifier gain depends very weakly on the wavelengths of operation
and does not affect the performance, The two primary candidates of interest at JPL are
532 nm and 1064 nm. While detector efficiency is higher at 532 nm, there is =3 dB power
loss in frequency doubling to 532 nm. If the parametric amplifier is used in the direct
detection system, 1064 nm wavelength can be chosen for the signal carrier. The quantum
efficiency of the detector in the amplifier based system while being poorer does not
degrade the system performance.

The amplifier noise factor F was taken as being unity. In fact, even if the amplifier is less
than ideal it will not result in a significant degradation of performance because the shot
noise due to the signal and noise are much greater than the amplifier added noise. The
background noise count as well as the amplifier noise are directly related to the pulse
width of the M-ary word. A shorter pulse width will result in a smaller noise count.

Another significant possibility is the reduction of the receiving antenna size that is
possible in the proposed detection scheme. From the point of view of technical
difficulties as well as economic constraints, a smaller antenna is preferred. A 10m
antenna is being considered at JPL presently. This antenna can be used to communicate
up to 40 AU. With an amplifier based detection the size of the antenna can be reduced by

J~. To take an example, if we operate the communications link at 1064 nma factor of
f 2

wavelength where Si-APD has a quantum efficiency, about 40% and an excess noise
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factor close to 3, the antenna size can be reduced to about 3.65m from a 10m one required
for a direct detection system, If the antenna size remains at 10m, the signal-to-noise ratio
gain is about 7,5 or approximately 8.75 dB.

A brief discussion on near earth optical communication is in order here, Both the
amplifier based system and the direct detection system can support high data rates as
would typically be required in a near earth link, Also, the problem of very weak signal
detection does not exist. Near earth links will potentially provide a higher SNR at the
ground receiver. However, the limiting factor for a parametric amplifier based high data
rate ground based system is the availability of high average power, high repetition rate
pulsed lasers for the pump. The constraint on the pump laser will limit the performance of
the system to lower data rates compared to the direct detection receiver. The maximum
data rate that an amplifier based system can support will be determined by the available
high power pump laser technology.

The biggest problem in implementing this system is the synchronization between the
communications signal and the pump laser. As mentioned earlier for efficient
amplification to occur, the pump and the signal has to be matched temporally and
spatially. The OPA has a sufficiently wide acceptance angle and the problem of spatial
mode matching may not be high, The wide acceptance angle is one of the advantages
compared to the heterodyne system where only the mode of the incoming signal that is
matched to the local oscillator is detected, An OPA amplifies all the modes present in its
angular bandwidth. This offers an intersting comparison with the heterodyne detection
system. The heterodyne detection system requires good spatial mode match at the
detector surface(s), whereas OPA requires good volume mode match. However, the k--
vector mismatch allowed for the heterodyne detection is smaller than that of the OPA.
Consequently, tehre is a more stringent requirement of alignment for the heterodyne
receiver. For heterodyne receivers opearting inside the atmosphere, the stringent
alignment requirement also translates to limits on the aperture size, as the atmospheric
turbulence limits teh effective aperture size to that of a coherent cell size, r~. The field-of-
view of the heterodyne receiver can be increased only at the cost of reduced mode
matching efficiency and increased local oscillator shot noise contribution. For an OPA
based sytem, the mode mismatch leads to a relatively larger value for the amplifier noise.
However, an inspection of Eqn. (16) shows that an M-fold increase in amplifier noise
does not lead to an M-fold decrease of SNR. The other advantage of the OPA based
system is that the heterodyne sytem is still limited by the qunatum effciency of the
detector while an OPA based sytem is not,

If due to angle mismatch there is phase mismatch between the pump and the signal
beam, it will result in a loss of gain, Since the gain from the amplifier is quite large, a
small loss in the gain will not result in a degradation of the system performance.
However, the problem of temporal matching between the pump and the signal can be
quite large especially when the distances involved are large, like a Pluto-Earth link. This
is an open problem and further work needs to be done on how the synchronization can be
achieved,
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